FEF-Controlled Alpha Delay Activity Precedes Stimulus-Induced Gamma-Band Activity in Visual Cortex.
نویسندگان
چکیده
Recent findings in the visual system of nonhuman primates have demonstrated an important role of gamma-band activity (40-100 Hz) in the feedforward flow of sensory information, whereas feedback control appears to be established dynamically by oscillations in the alpha (8-13 Hz) and beta (13-18 Hz) bands (van Kerkoerle et al., 2014; Bastos et al., 2015). It is not clear, however, how alpha oscillations are controlled and how they interact with the flow of visual information mediated by gamma-band activity. Using noninvasive human MEG recordings in subjects performing a visuospatial attention task, we show that fluctuations in alpha power during a delay period in a spatial attention task preceded subsequent stimulus-driven gamma-band activity. Importantly, these interactions correlated with behavioral performance. Using Granger analysis, we further show that the right frontal-eye field (rFEF) exerted feedback control of the visual alpha oscillations. Our findings suggest that alpha oscillations controlled by the FEF route cortical information flow by modulating gamma-band activity.SIGNIFICANCE STATEMENT Visual perception relies on a feedforward flow of information from sensory regions, which is modulated by a feedback drive. We have identified the neuronal dynamics supporting integration of the feedforward and feedback information. Alpha oscillations in early visual regions reflect feedback control when spatial attention is allocated and this control is exercised by the right frontal eye field. Importantly, the alpha-band activity predicted both performance and activity in the gamma band. In particular, gamma activity was modulated by the phase of the alpha oscillations. These findings provide novel insight into how the brain operates as a network and suggest that the integration of feedforward and feedback information is implemented by cross-frequency interactions between slow and fast neuronal oscillations.
منابع مشابه
Top-Down Beta Enhances Bottom-Up Gamma
Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes may implement top-down control of stimulus processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. To test this po...
متن کاملTactile stimulation accelerates behavioral responses to visual stimuli through enhancement of occipital gamma-band activity
We investigated how responses of occipital cortex to visual stimuli are modulated by simultaneously presented tactile stimuli. Magnetoencephalography was recorded while subjects performed a simple reaction time task. Presence of a task-irrelevant tactile stimulus leads to faster behavioral responses and earlier and stronger gamma-band synchronization in occipital cortex, irrespective of the rel...
متن کاملEnhanced Stimulus-Induced Gamma Activity in Humans during Propofol-Induced Sedation
Stimulus-induced gamma oscillations in the 30-80 Hz range have been implicated in a wide number of functions including visual processing, memory and attention. While occipital gamma-band oscillations can be pharmacologically modified in animal preparations, pharmacological modulation of stimulus-induced visual gamma oscillations has yet to be demonstrated in non-invasive human recordings. Here,...
متن کاملTactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas.
We investigated the effects of spatial-selective attention on oscillatory neuronal dynamics in a tactile delayed-match-to-sample task. Whole-head magnetoencephalography was recorded in healthy subjects while dot patterns were presented to their index fingers using Braille stimulators. The subjects' task was to report the reoccurrence of an initially presented sample pattern in a series of up to...
متن کاملFrontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.
Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8-12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 37 15 شماره
صفحات -
تاریخ انتشار 2017